Телеметрия метеорологическая - определение. Что такое Телеметрия метеорологическая
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Телеметрия метеорологическая - определение

Радарная метеорология; Метеорологическая радиолокация
  • Метеорадарная башня с радиолокационной установкой [[C-диапазон]]а (2007 год)
Найдено результатов: 31
Телеметрия метеорологическая      

Телеметрией (правильнее телеизмерениями (См. Телеизмерение)) пользуются для получения метеорологической информации. Существует ряд информационных метеорологических телеметрических систем (ТМС), в основу которых положены общие принципы телемеханики (См. Телемеханика). Появление в 1930 Радиозонда положило начало развитию радиотелеметрических систем и широкому их применению для исследования верхних слоев атмосферы. Радио-ТМС температурно-ветрового зондирования атмосферы (См. Зондирование атмосферы) распространены во всех странах мира. Др. разновидность ТМС - автоматические радиометеорологические станции (См. Радиометеорологическая станция) (АРМС). которые устанавливаются в труднодоступных районах (льды Арктики, высокогорные районы и т. п.). Первые АРМС были разработаны в СССР в начале 30-х гг. Наземные телеметрические метеорологические станции с проводными линиями связи (протяжённостью до 10 км) применяются в метеорологической сети, особенно на аэродромах; они появились в СССР в конце 50-х гг.

Исследования верхних слоев атмосферы с помощью ракет были предприняты в США в начале 40-х гг., а в СССР систематическая работа радио-ТМС ракетного зондирования атмосферы началась с начала 50-х гг. Измерительно-передающая аппаратура поднимается с помощью ракеты на высоту более 100 км и при спуске на парашюте передаёт данные о состоянии атмосферы, которые принимаются наземной станцией. Важную роль играют радио-ТМС, установленные на ИСЗ. которые с помощью измерительно-передающей аппаратуры и приёмной аппаратуры на наземных станциях обеспечивают получение информации о состоянии поверхностей суши и океана, облачности, радиации атмосферы, суши и воды и о др. характеристиках в масштабах всей планеты.

Лит.: Ильин В. А.. Телеуправление и телеизмерение, 2 изд., М.. 1974; Системы получения и передачи метеорологической информации, Л.. 1971; Вайсман Г. М.. Верле Ю. С.. Основы радиотехники и радиосистемы в гидрометеорологии, Л.. 1970; Автоматическая станция КРАМС. Л.. 1974; Разработка и эксплуатация автоматических метеорологических станций. Труды II Международного симпозиума, Л.. 1974.

М. С. Стернзат.

АМСГ         
Авиационная метеорологическая станция гражданская (АМСГ) — специализированное учреждение (аэродромный метеорологический орган), осуществляющее метеорологическое обеспечение гражданской авиации. АМСГ имеются в большинстве аэропортов России и стран СНГ (кроме части небольших аэропортов местных воздушных линий).
МЕТЕОСТАНЦИЯ         
  • Цифровая метеостанция Лакросс Текнолоджи S84107 выпуска 2017 года, отображающая температуру, влажность воздуха в помещении и на улице, атмосферное давление и его изменение, прогноз погоды на сутки, фазы Луны.
  • Лакросс Текнолоджи]] с монохромным дисплеем выпуска до 2010 года.
СПЕЦИАЛЬНОЕ УЧРЕЖДЕНИЕ, ОБЛАДАЮЩЕЕ МЕТЕОПЛОЩАДКОЙ, УДОВЛЕТВОРЯЮЩЕЙ ОПРЕДЕЛЁННЫМ ТРЕБОВАНИЯМ
Метеорологическая станция; Пост метеорологической службы; Метеорологические станции
и, ж.
Учреждение, ведущее систематические наблюдения над состоянием погоды.
Метеостанция         
  • Цифровая метеостанция Лакросс Текнолоджи S84107 выпуска 2017 года, отображающая температуру, влажность воздуха в помещении и на улице, атмосферное давление и его изменение, прогноз погоды на сутки, фазы Луны.
  • Лакросс Текнолоджи]] с монохромным дисплеем выпуска до 2010 года.
СПЕЦИАЛЬНОЕ УЧРЕЖДЕНИЕ, ОБЛАДАЮЩЕЕ МЕТЕОПЛОЩАДКОЙ, УДОВЛЕТВОРЯЮЩЕЙ ОПРЕДЕЛЁННЫМ ТРЕБОВАНИЯМ
Метеорологическая станция; Пост метеорологической службы; Метеорологические станции
Метеостанция — специальное учреждение, обладающее метеоплощадкой, удовлетворяющей определённым требованиям, на которой установлены стандартные приборы для непрерывных метеорологических измерений (наблюдений за погодой и климатом) в установленные сроки по единой методике в определённой последовательности, и передаче собранных данных в Гидрометцентр или иным потребителям.
Метеорологическая станция         
  • Цифровая метеостанция Лакросс Текнолоджи S84107 выпуска 2017 года, отображающая температуру, влажность воздуха в помещении и на улице, атмосферное давление и его изменение, прогноз погоды на сутки, фазы Луны.
  • Лакросс Текнолоджи]] с монохромным дисплеем выпуска до 2010 года.
СПЕЦИАЛЬНОЕ УЧРЕЖДЕНИЕ, ОБЛАДАЮЩЕЕ МЕТЕОПЛОЩАДКОЙ, УДОВЛЕТВОРЯЮЩЕЙ ОПРЕДЕЛЁННЫМ ТРЕБОВАНИЯМ
Метеорологическая станция; Пост метеорологической службы; Метеорологические станции

учреждение, которое проводит регулярные наблюдения за состоянием атмосферы. Наблюдения включают измерения значений метеорологических элементов (См. Метеорологические элементы) в установленные сроки и определение основных характеристик (начало, окончание и интенсивность) атмосферных явлений. Первые М. с. стали создаваться ещё в 18 в., когда отдельные учёные или научные общества начали проводить систематические наблюдения за погодой. В 19 в. после учреждения центральных метеорологических институтов, в частности Главной физической обсерватории в Петербурге (1849), М. с. получили единое руководство, а также общую программу наблюдений.

В состав М. с. входит метеорологическая площадка, где устанавливается большинство приборов (психрометрическая будка с термометрами и гигрометрами, приборы для измерения скорости и направления ветра, осадкомер, почвенные термометры и др.), служебное здание, в котором находятся барометры, регистрирующие части дистанционных приборов, переносные приборы и где ведётся обработка наблюдений. Наблюдения проводятся по стандартной программе в течение 10-минутного интервала времени через каждые 3 или 6 часов, а в некоторых случаях ежечасно. Полученные данные кодируют (см. Метеорологический код) и передают в виде цифровой сводки в установленные адреса (бюро погоды, авиационные метеостанции и т. п.). Многие М. с. наряду со стандартными ведут агрометеорологические наблюдения, определяют интенсивность солнечной радиации (прямой, рассеянной и суммарной), радиационный баланс, величину испарения почвенной влаги и др. М. с. устанавливают также на судах; автоматических М. с. - на буях в открытом море и в необитаемых районах суши.

Данные наблюдений М. с. используются для составления прогнозов погоды и предупреждений о неблагоприятных для народного хозяйства явлениях погоды, изучения климата и его изменений, а также для непосредственного обеспечения обслуживаемых организаций сведениями о погоде. В СССР основная сеть М. с. входит в состав Гидрометеорологической службы СССР.

Лит.: Наставление гидрометеорологическим станциям и постам, 4 изд., в. 3, Л., 1969.

И. В. Кравченко.

МЕТЕОРОЛОГИЧЕСКАЯ СТАНЦИЯ         
  • Цифровая метеостанция Лакросс Текнолоджи S84107 выпуска 2017 года, отображающая температуру, влажность воздуха в помещении и на улице, атмосферное давление и его изменение, прогноз погоды на сутки, фазы Луны.
  • Лакросс Текнолоджи]] с монохромным дисплеем выпуска до 2010 года.
СПЕЦИАЛЬНОЕ УЧРЕЖДЕНИЕ, ОБЛАДАЮЩЕЕ МЕТЕОПЛОЩАДКОЙ, УДОВЛЕТВОРЯЮЩЕЙ ОПРЕДЕЛЁННЫМ ТРЕБОВАНИЯМ
Метеорологическая станция; Пост метеорологической службы; Метеорологические станции
учреждение для регулярных метеорологических наблюдений над состоянием атмосферы и земной поверхности. Метеорологическая станция оборудована измерительными приборами для определения температуры, давления, влажности воздуха и др. метеорологических элементов.
метеостанция         
  • Цифровая метеостанция Лакросс Текнолоджи S84107 выпуска 2017 года, отображающая температуру, влажность воздуха в помещении и на улице, атмосферное давление и его изменение, прогноз погоды на сутки, фазы Луны.
  • Лакросс Текнолоджи]] с монохромным дисплеем выпуска до 2010 года.
СПЕЦИАЛЬНОЕ УЧРЕЖДЕНИЕ, ОБЛАДАЮЩЕЕ МЕТЕОПЛОЩАДКОЙ, УДОВЛЕТВОРЯЮЩЕЙ ОПРЕДЕЛЁННЫМ ТРЕБОВАНИЯМ
Метеорологическая станция; Пост метеорологической службы; Метеорологические станции
ж.
Метеорологическая станция.
ТЕЛЕМЕТРИЯ         
техника измерений на расстоянии. Телеметрия позволяет удовлетворить весьма важную потребность ученого, инженера, медицинского эксперта или иного пользователя в данных об удаленных объектах.
Области применения. В качестве одного из важных применений телеметрии можно назвать летные испытания новой модели самолета или другого летательного аппарата. Для оценки работоспособности конструкции и летных характеристик самолета нужно измерять расход топлива, характеристики работы двигателей, механические нагрузки, испытываемые фюзеляжем и крыльями, вибрации и температуры критически важных элементов летательного аппарата, параметры электронного оборудования самолета, траекторные данные. Средства телеметрии следят за измерениями во множестве точек, число которых составляет от нескольких сотен до нескольких тысяч, и предоставляют результаты измерений конструкторам на их наземные компьютеры или дисплейные терминалы. См. также АЭРОДИНАМИКА; АЭРОКОСМИЧЕСКИХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ КОНСТРУИРОВАНИЕ.
Система телеметрии космического летательного аппарата может обеспечить получение важных научных данных о поверхности, атмосфере или электромагнитном поле планет, а также следить за состоянием здоровья космонавтов. См. также ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ; КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ.
Некоторые зоны электроэнергетических установок и станций (особенно атомных) небезопасны для людей; вместе с тем параметры их рабочих режимов (такие, как температура, давление, расход охладителя) имеют критически важное значение для оценки режима работы и безопасности станции. Средства телеметрии в таких системах непрерывно следят за режимом работы и передают результаты измерений на дисплейные терминалы операторов станции. См. также АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ И РЕГУЛИРОВАНИЕ; ЭЛЕКТРИЧЕСКАЯ ЭНЕРГИЯ.
Во многих больницах осуществляется непрерывный контроль за состоянием больных с сердечной недостаточностью или с другими тяжелыми заболеваниями. Чтобы избежать необходимости иметь специалиста-медика у каждой койки, каждому больному устанавливают миниатюрный телеметрический передатчик, и за всеми больными ведется непрерывное наблюдение из одного места. См. также БИОЭЛЕКТРИЧЕСТВО
; СЕРДЦЕ
.
На месте, где произошел несчастный случай, группа медиков, приехавшая на машине скорой помощи, может установить привезенные с собой средства телеметрии. Благодаря этим средствам медицинские эксперты, находящиеся в травматологическом центре, получают возможность следить за критически важными измерениями и консультировать медперсонал, оказывающий первую помощь на месте происшествия и подготавливающий больного к транспортировке в больницу.
Стандарты. Наиболее сложные современные системы телеметрии используются в аэрокосмических исследованиях. Чтобы достичь некоторого уровня стандартизации, испытательные полигоны стремятся придерживаться системы стандартов, разработанных Межведомственной комиссией по измерительным средствам (IRIG).
Измерительные преобразователи. Результаты непосредственных измерений (температуры, давления, нагрузки, ускорения и т.д.) преобразуются в пропорциональное электрическое напряжение. К числу часто применяемых датчиков относятся датчики (преобразователи) давления и расхода, термопары, термометры сопротивления, мосты и потенциометры (см. также ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ; ТЕРМОЭЛЕКТРИЧЕСТВО). В типичную телеметрическую систему входит несколько разновидностей формирователей сигналов, каждый из которых используется для преобразования выходного сигнала того или иного конкретного преобразователя в стандартный сигнал напряжения от 5 до 10 В.
Мультиплексор. Система телеметрии воспринимает и ретранслирует электрические сигналы от многих датчиков одновременно благодаря процессу уплотнения данных, называемому мультиплексированием. В стандарте IRIG приняты три способа уплотнения данных: амплитудно-импульсная модуляция (АИМ), частотная модуляция (ЧМ) и импульсно-кодовая модуляция (ИКМ). ИКМ до сих пор является наиболее распространенной благодаря характерной для нее низкой вероятности ошибок (обычно менее 0,25% для любого измерения). ИКМ-система преобразует результат каждого измерения, выраженный аналоговым значением напряжения, в приемлемое для компьютера цифровое значение. В системе с использованием, например, 12-разрядных двоичных чисел самое малое напряжение будет представлено кодовым числом 000 000 000 000 (0), а самое большое - 111 111 111 111 (2047). Для подачи сигнала о начале каждого нового цикла сканирования датчиков и преобразователей генерируется специальная кодограмма.
Радиопередача и радиоприем. Комиссия IRIG определяет стандартные диапазоны частот для радиопередачи и приема в пределах от 1435 до 1540 МГц для пилотируемых летательных аппаратов и от 2200 до 2400 МГц для беспилотных. Типичный диапазон мощностей при радиопередаче ограничен пределами 1-10 Вт, поскольку для более высоких мощностей требовались бы передатчик слишком большого размера и массы, а также использование батарей.
На маневрирующем летательном аппарате, каким является самолет, для передачи данных используют всенаправленную антенну. Таким образом, сигнал можно принимать независимо от положения самолета. Чтобы компенсировать низкий уровень мощности при передачах со спутника или космического зонда, направленную антенну наводят на точку, в которой на земле находится приемная станция. Приемная антенна обычно представляет собой устройство автоматического слежения, которое принимает сигнал телеметрии и непрерывно сопровождает его источник, пользуясь информацией от радиоприемника, связанного с контролируемым объектом.
Запись и сохранение информации на магнитной ленте. В большинстве научных и технических приложений данные телеметрии записываются на магнитную ленту, даже если они одновременно исследуются аналитиками. Такая запись позволяет воспроизвести данные после завершения испытаний и, таким образом, более эффективно проанализировать их результаты. IRIG устанавливает стандарты на регистраторы показаний контрольно-измерительных приборов как в режиме обычной записи (вдоль длины ленты), так и в режиме наклонно-строчной записи (как при записи изображений). На ленте записывается также текущее время, что позволяет аналитику соотносить данные со временем при воспроизведении.
Демультиплексор. Демультиплексор в системе телеметрии распознает результаты измерений из данных, полученных по системе связи или взятых с магнитной ленты. В ИКМ-системе процесс демультиплексирования (разуплотнения) включает в себя отыскание кодограммы, которая вставляется в поток данных, чтобы сигнализировать о начале каждого цикла сканирования, после чего ведется подсчет битов для идентификации каждого измерения и подготовки его результата для ввода в компьютер.
Компьютер и воспроизведение на экране. Обработка телеметрических данных может быть сосредоточена на одном компьютере или выполняться на нескольких машинах. В любом случае результаты особенно важных измерений исследуются сразу же по получении. Их проверяют, чтобы убедиться в их достоверности и отсутствии отказов измерительного и телеметрического оборудования.
В типичном случае через 0,25 с после выполнения кодирования результат измерения воспроизводится на приемной станции для проведения экспресс-анализа. Любое отклонение от нормы отображается другим цветом и может инициировать сигнал звукового предупреждения, чтобы привлечь к данной ситуации внимание аналитика. Изображения на экране можно получать в одной из нескольких разных форм. Каждый пользователь может назначить по своему выбору воспроизведение результатов конкретных измерений в графическом или числовом виде. Телеметрическое оборудование воспроизведения обычно снабжено устройствами для копирования, позволяющими аналитику сделать дубликат записи любых представляющих интерес данных.
Компьютерные программы. Компьютерные программы, используемые в телеметрии, существенно отличаются от тех, которыми пользуются в менее ответственных применениях. Поскольку данные телеметрии поступают на приемную станцию многократно и иногда даже непрерывно, аппаратные и программные средства должны быть хорошо согласованы друг с другом. В типичных случаях аппаратные средства отрабатывают относительно простые и неоднократно повторяющиеся задания (примером могут служить установление синхронизации и реакция на возникновение тревожной ситуации); программные средства выполняют первичную обработку для воспроизведения данных на экране.
В задачи программного обеспечения входят настройка всех аппаратных и программных средств, высокоскоростной ввод данных, возможная предварительная проверка аппаратных средств, высокоскоростной вывод специально отобранных результатов измерений на дисплейные терминалы, форматирование дисплея и специальная обработка данных в соответствии с требованиями анализа. Программные средства также довольно часто используют, чтобы подготовить дисковый накопитель для работы со всеми или отобранными результатами измерений, для выборки данных с диска в целях проведения более детального анализа и для выполнения самодиагностики состояния системы телеметрии перед началом и в процессе приема данных.
Телеизмерение         
(ТИ)

телеметрия, измерение на расстоянии, осуществляемое средствами телемеханики (См. Телемеханика); раздел телемеханики, к которому относятся передача на расстояние измерительной информации и представление её в виде, наиболее удобном для непосредственного восприятия оператором, ввода в управляющую машину или автоматической регистрации. Измерительная информация от измерительных преобразователей (См. Измерительный преобразователь) (датчиков) передаётся на пункт управления или контроля непрерывно или циклически, а иногда по вызову - после посылки оператором специального сигнала-запроса, содержащего адрес (кодовое обозначение) измеряемого параметра. При передаче непрерывная измеряемая величина на контролируемом пункте часто подвергается квантованию (см. Квантование сигнала); на пункте управления она воспроизводится в аналоговой форме (в виде показаний стрелочных приборов) или в цифровой форме. Измерительная информация передаётся с помощью систем ТИ, а также с помощью комбинированной телеизмерения и телесигнализации системы (См. Телеизмерения и телесигнализации система) либо с помощью комплексной телемеханической системы (См. Телемеханическая система).

ТИ, осуществляемое по радиоканалам, называется радиотелеизмерением, или радиотелеметрией (см. Радиотелемеханика).

Лит. см. при ст. Телемеханика.

Г. А. Шастова.

Телеметрия         
Телеметри́я (от «далеко» +  — «измеряю») — область науки и техники, занимающаяся вопросами разработки и эксплуатации телеметрических систем — комплекса автоматизированных средств, обеспечивающих получение, преобразование, передачу по каналу связи, приём, обработку и регистрацию измерительной (телеметрической) информации и информации о различных событиях с целью контроля на расстоянии различных объектов и процессов.

Википедия

Радиолокационная метеорология

Радиолокационная или радарная метеорология — прикладной раздел метеорологии, связанный с использованием радиолокационной техники для получения информации о состоянии земной атмосферы и о связанных с ней природных явлениях.

Радиолокационные методы наблюдения за окружающей средой основываются на регистрации радиосигналов, переотражённых от атмосферных неоднородностей (туманов, осадков, скоплений аэрозолей, зон турбулентных возмущений воздуха и т. п.) Анализ параметров полученных радилокационных данных позволяет оперативно оценивать координаты и протяжённость атмосферных объектов, а кроме этого — некоторые их физические характеристики.

В результате радиолокационная техника находит широкое применение в повседневных задачах метеорологии для подготовки прогнозов погоды, выяснения состава, структуры и размеров облаков, локализации и интенсивности осадков, уточнения направления и скорости воздушных потоков за облаками, а также — изучения особенностей развития разнообразных проявлений комплексных атмосферных процессов: торнадо, гроз, тропических циклонов и т. п. Достоинством радарных методов зондирования является возможность их использования при любых условиях видимости.

Что такое Телеметр<font color="red">и</font>я метеоролог<font color="red">и</font>ческая - определен